

General Certificate of Education

Mathematics 6360

MFP4 Further Pure 4

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

[^0]
Key to mark scheme and abbreviations used in marking

$\left.\begin{array}{llll}\text { M } & \text { mark is for method } & \\ \mathrm{m} \text { or } \mathrm{dM} & \text { mark is dependent on one or more M marks and is for method } \\ \text { A } & \text { mark is dependent on } \mathrm{M} \text { or } \mathrm{m} \text { marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP4

Q	Solution	Marks	Total	Comments
1	Attempt at char eqn $\lambda^{2}-7 \lambda-144=0$ Solving quadratic to find evals $\lambda=16$ or -9 $\begin{aligned} & \lambda=16 \Rightarrow-9 x+12 y=0 \Rightarrow y=\frac{3}{4} x \\ & \Rightarrow \text { evecs } \alpha\left[\begin{array}{l} 4 \\ 3 \end{array}\right] \\ & \lambda=-9 \Rightarrow 16 x+12 y=0 \Rightarrow y=-\frac{4}{3} x \\ & \Rightarrow \text { evecs } \beta\left[\begin{array}{c} 3 \\ -4 \end{array}\right] \end{aligned}$	M1 M1 A1 M1 A1 A1	6	Any suitable method Ignore missing " $=0$ " Any method CAO Either λ substituted back CAO (for any non-zero α) CAO (for any non-zero β)
	Total		6	
2(a)(i)	$\mathbf{a} \times \mathbf{b}=\left\|\begin{array}{lll} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 2 & 1 & 2 \end{array}\right\|=\left[\begin{array}{c} 1 \\ 4 \\ -3 \end{array}\right]$	M1 A1	2	Genuine vector product attempt CAO
(ii)	$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=\left[\begin{array}{c} 1 \\ 4 \\ -3 \end{array}\right] \cdot\left[\begin{array}{c} -2 \\ t \\ 6 \end{array}\right]=4 t-20$	M1 A1	2	Must get a scalar answer ft
(iii)	$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=\left\|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 4 & -3 \\ -2 & t & 6 \end{array}\right\|=\left[\begin{array}{c} 3 t+24 \\ 0 \\ t+8 \end{array}\right]$	M1 A1	2	Either using (a)(i) or starting again CAO
(b)	$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=0 \Rightarrow t=5$	M1A1	2	ft from (a)(ii)
(c)	$\begin{aligned} & (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=\mathbf{0} \text { or } \mathbf{c}=\text { mult. of }(\mathbf{a} \times \mathbf{b}) \\ & \Rightarrow t=-8 \end{aligned}$	M1 A1	2	Use of any non-zero row to find some value of t CAO - allow unseen check
	Total		10	
3(a)	Det $\mathbf{A}=k+3+12-4-9-k=2$	M1	2	CAO
(b)	$\begin{aligned} \mathbf{A}^{-1} & =\frac{1}{\operatorname{Det} \mathbf{A}}(\operatorname{adj} \mathbf{A}) \\ & =\frac{1}{2}\left[\begin{array}{ccc} k-9 & 3-k & 2 \\ 12-k & k-4 & -2 \\ -1 & 1 & 0 \end{array}\right] \end{aligned}$	B1 M1 M1 A1 A1	5	Correct use of the determinant (any value) Attempt at matrix of cofactors Use of transposition and signs At least 5 entries correct (even if $2^{\text {nd }}$ M1 not earned) CAO - ft det only
	Total		7	

MFP4 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline \multirow[t]{2}{*}{4(a)} \& Use of $\cos \theta=\frac{\text { scalar product }}{\text { product of moduli }}$ \& M1 \& \& Must be $\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$ and $\left[\begin{array}{c}5 \\ 1 \\ -1\end{array}\right]$

\hline \& $$
\begin{aligned}
& \text { Numerator }=7 \quad \text { Denominator }=\sqrt{21} \sqrt{27} \\
& \theta=72.9^{\circ}
\end{aligned}
$$ \& $$
\begin{gathered}
\mathrm{B} 1, \mathrm{~B} 1 \\
\mathrm{~A} 1
\end{gathered}
$$ \& 4 \& " $\sin \theta="$ scores M0 at this stage Allow denominator unsimplified CAO (but A0 if candidate proceeds to find its complement)

\hline (b)(i) \& $$
\begin{aligned}
& a+4 b=7 \quad \text { and } \quad a-b=12 \\
& a=11 \text { and } b=-1
\end{aligned}
$$ \& $$
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
$$ \& 3 \& At least one correctly stated Solving simultaneously CAO

\hline (ii) \& $$
\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
5 & 1 & -1 \\
2 & 1 & 4
\end{array}\right]=\left[\begin{array}{c}
5 \\
-22 \\
3
\end{array}\right]
$$ \& M1

A1 \& 2 \& For any valid, complete method for finding a suitable direction vector, eg finding a $2^{\text {nd }}$ common point, eg $\left(2^{1 / 2}, 0,1 / 2\right)$ or $\left(1^{2} / 3,3^{2 / 3}, 0\right)$, and then $\mathbf{d v}=$ difference CAO

\hline (iii) \& | $\mathbf{r}=\left[\begin{array}{c} 0 \\ 11 \\ -1 \end{array}\right]+\lambda\left[\begin{array}{c} 5 \\ -22 \\ 3 \end{array}\right]$ |
| :--- |
| or other equivalent line form eg $(\mathbf{r}-\mathbf{a}) \times \mathbf{d}=\mathbf{0}$ | \& | M1 |
| :--- |
| A1 | \& 2 \& | Must be a line equation and use their (b)(ii) |
| :--- |
| ft their (b)(i) point, or any other correct point on the line |
| A0 if no $\mathbf{r}=$ or $l=$ etc |

\hline \& Total \& \& 11 \&

\hline 5(a) \& | $y=0 \text { (or " } x \text {-axis") and } y=x$ |
| :--- |
| $y=0$ is a line of invariant points since $\lambda=1$ | \& \[

$$
\begin{gathered}
\mathrm{B} 1, \mathrm{~B} 1 \\
\mathrm{~B} 1
\end{gathered}
$$

\] \& 3 \& | or $\mathbf{r}=a\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{r}=b\left[\begin{array}{l}1 \\ 1\end{array}\right]$ |
| :--- |
| Allow if proven from $\left(x^{\prime}, y^{\prime}\right)=(x, y)$ or ft from their line corresponding to $\lambda=1$ |

\hline (b)(i) \& $$
\mathbf{D}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right], \quad \mathbf{U}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],
$$ \& B1,B1 \& 2 \& ft \mathbf{U} from \mathbf{D}

\hline \multirow[t]{4}{*}{(ii)} \& $$
\mathbf{U}^{-1}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$ \& B1 \& \& ft from \mathbf{U} (provided non-singular)

\hline \& $$
\mathbf{M}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$ \& M1 \& \& Attempt

\hline \& $$
=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right] \text { or }\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$ \& A1 \& \& ft first multiplication

\hline \& $$
=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]
$$ \& A1 \& 4 \& CAO \quad NMS $\Rightarrow 0$

\hline
\end{tabular}

MFP4 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline (iii) \& \[
\begin{aligned}
\mathbf{D}^{n} \& =\left[\begin{array}{cc}
1 \& 0 \\
0 \& 2^{n}
\end{array}\right] \\
\mathbf{M}^{n} \& =\mathbf{U} \mathbf{D}^{n} \mathbf{U}^{-1} \\
\& =\left[\begin{array}{cc}
1 \& 2^{n}-1 \\
0 \& 2^{n}
\end{array}\right]
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& 3 \& \begin{tabular}{l}
Noted or used \\
Used; must actually do some multiplying
\end{tabular} \\
\hline \& Total \& \& 12 \& \\
\hline \begin{tabular}{l}
6(a) \\
(b)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
eg (2) \(\mathbf{- (1)} \Rightarrow x+7 z=-3\) \\
(3) \(-2 \times(\mathbf{2}) \Rightarrow x+8 z=-2\) \\
Solving \(2 \times 2\) system
\[
x=-10, y=19, z=1
\]
\[
\left|\begin{array}{ccc}
1 \& 1 \& -3 \\
2 \& 1 \& 4 \\
5 \& 2 \& a
\end{array}\right|=15-a
\] \\
Setting \(=\) to zero and solving for \(a\) \(a=15\)
\[
\begin{gathered}
x+y-3 z=b \\
2 x+y+4 z=3 \\
5 x+2 y+15 z=4
\end{gathered}
\] \\
eg \\
(2) - (1) \(\Rightarrow x+7 z=3-b\) \\
(3) \(-2 \times(\mathbf{2}) \Rightarrow x+7 z=-2\) \\
Equating the two RHSs
\[
b=5
\]
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
A1 \\
M1 \\
A1 \\
B1 \\
M1 \\
A1 \\
M1A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 3

5 \& | Eliminating first variable |
| :--- |
| Determinant |
| Must get a numerical answer |
| ft |
| Eliminating first variable |
| CAO |
| NB Eliminating $x:-y+10 z=3-2 b$ $\begin{aligned} -3 y+30 z & =4-5 b \\ -y+10 z & =-7 \end{aligned}$ |
| NB Eliminating z : $\begin{aligned} & 10 x+7 y=4 b+9 \\ & 10 x+7 y=5 b+4 \\ & 10 x+7 y=29 \end{aligned}$ |

\hline \& Total \& \& 13 \&

\hline 6(a) \& Alternate Schemes Cramer's Rule

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
1 & 1 & -3 \\
2 & 1 & 4 \\
5 & 2 & 16
\end{array}\right|, \Delta_{x}=\left|\begin{array}{ccc}
6 & 1 & -3 \\
3 & 1 & 4 \\
4 & 2 & 16
\end{array}\right|, \\
& \Delta_{y}=\left|\begin{array}{ccc}
1 & 6 & -3 \\
2 & 3 & 4 \\
5 & 4 & 16
\end{array}\right|, \Delta_{z}=\left|\begin{array}{lll}
1 & 1 & 6 \\
2 & 1 & 3 \\
5 & 2 & 4
\end{array}\right|
\end{aligned}
$$

$$
=-1,10,-19 \text { and }-1 \text { respectively }
$$

\[
$$
\begin{aligned}
& x=\frac{\Delta_{x}}{\Delta}, y=\frac{\Delta_{y}}{\Delta}, z=\frac{\Delta_{z}}{\Delta} \\
& x=-10, y=19, z=1
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| A1 | \& (5) \& | Attempt at any two |
| :--- |
| Any one correct |
| At least one attempted numerically |
| Any 2 correct ft |
| All 3 correct CAO |

\hline
\end{tabular}

MFP4 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 6(a) \& Inverse matrix method
\[
\begin{aligned}
\& C^{-1}=\frac{1}{-1}\left[\begin{array}{ccc}
8 \& -22 \& 7 \\
-12 \& 31 \& -10 \\
-1 \& 3 \& -1
\end{array}\right] \\
\& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=C^{-1}\left[\begin{array}{l}
6 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{c}
-10 \\
19 \\
1
\end{array}\right]}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& (5) \& \begin{tabular}{l}
M0 if no inverse matrix is given \\
Any 2 correct ft \\
All 3 correct CAO
\end{tabular} \\
\hline 6(all) \& \begin{tabular}{l}
\[
\left[\begin{array}{l}
{\left[\begin{array}{ccc|c}
1 \& 1 \& -3 \& b \\
2 \& 1 \& 4 \& 3 \\
5 \& 2 \& a \& 4
\end{array}\right]} \\
\rightarrow\left[\begin{array}{ccc|c}
1 \& 1 \& -3 \& b \\
0 \& -1 \& 10 \& 3-2 b \\
0 \& -3 \& a+15 \& 4-5 b
\end{array}\right] \\
\rightarrow\left[\begin{array}{ccc|c}
1 \& 1 \& -3 \& b \\
0 \& 1 \& -10 \& 2 b-3 \\
0 \& 0 \& a-15 \& b-5
\end{array}\right]
\end{array}\right.
\] \\
(b)(i) For non-unique solutions, \(a=15\) \\
(ii) For consistency,
\[
4-5 b=3(3-2 b) \Rightarrow b=5
\] \\
(a) When \(a=16, b=6\)
\[
\begin{aligned}
\& {\left[\begin{array}{ccc|c}
1 \& 1 \& -3 \& 6 \\
0 \& 1 \& -10 \& 9 \\
0 \& 0 \& 1 \& 1
\end{array}\right]} \\
\& \Rightarrow z=1, y=19, x=-10
\end{aligned}
\]
\end{tabular} \& \& (4)
(2)
(2)

(5) \& $$
\begin{aligned}
R_{2}^{\prime} & =R_{2}-2 R_{1} \\
R_{3}^{\prime} & =R_{3}-5 R_{1}
\end{aligned}
$$

$$
R_{3}^{\prime}=R_{3}+3 R_{2}
$$

\hline 7(a)(i) \& | $\operatorname{det} \mathbf{W}=0$ |
| :--- |
| Transformed shapes have zero volume | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$
\] \& 2 \& Or equivalent statement ft volume statements

\hline (ii) \& | Char eqn is $\lambda^{3}-4 \lambda^{2}+4 \lambda=0$ |
| :--- |
| Solving the cubic eqn $\lambda=0,2,(2)$ | \& \[

$$
\begin{gathered}
\text { M1A3 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
$$
\] \& 6 \& One A mark for each coefficient (not the λ^{3})

\hline
\end{tabular}

MFP4 (cont)

[^0]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334) Registered address: AQA, Devas Street, Manchester M15 6EX

